

A Comprehensive Analysis of Future Residential PV Development in Austria

Julia Bock-Schappelwein

25. Österreichsicher Klimatag

Innsbruck, 25. April 2025

Analysis of the future role of prosumers in the Austrian energy system from an integrated perspective

Combination of a choice experiment, a technology diffusion model and a macroeconomic model will deliver insights into drivers of residential PV adoption, possible diffusion pathways as well as macroeconomic and distributive impacts

Novel scientific contributions

- For Austria, both the choice experiment on residential PV investment and the PV diffusion model
- The identification of options enabling vulnerable households to participate in energy transition via PV systems

Aims of the Project

Main objectives

Simulation of household PV investment scenarios in Austria with the technology diffusion model

Evaluation of macroeconomic & distributive effects of prosumer scenarios on socioeconomically differentiated household groups Development of policy recommendations for vulnerable groups to participate in energy transition

Sub-goals

Survey

- Identification of motives for household PV adoption in Austria
- Identification of factors determining adoption of household PV systems (with & without battery storage)
- Identification of non-financial barriers for adopting a residential PV system
- Development of technology diffusion model for household PV systems & integration into macroeconomic model DYNK
- Simulation of a set of diffusion scenarios for residential PV systems

Current Status of the Project

WP7 Stakeholders and Dissemination

Remark: Still awaiting data from OeMAG as input for the diffusion model.

First Results of the Survey

- 4
- Web-based survey completed in January 2025 (N=1,001; 36% adopters)
- Representative sample of Austrian households by geographical location, age, and gender

Barriers for Non-Adopters

■ Fully applies ■ Likely applies ■ Likely doesn't apply ■ Doesnt apply at all ■ Don't know

Share of PV Adopters

First Results / Progress of Diffusion Modelling as of March 2025

Links and Synergies to Other Projects

Pre-Projects		Contribution of / Relation to	
Acronym	Focus	Methodology FutuRes-PV	FutuRes-PV
START2030 (ACRP)	Economic incidence and social impacts of RES-E transformation	Linking DYNK and an electricity system model	Refines distributive impacts on different household groups of electricity transition and prosumerism
TransFair-AT (ACRP)	Policy scenarios achieving full decarbonisation of housing and mobility in Austria by 2040	Linking DYNK with vehicle choice, transport demand, & building stock model	Contributes in detail to the aspect of (household) electricity supply
CEDC (ACRP)	Scenarios for a circular economy focusing on buildings, electricity supply, and mobility	Linking a biophysical CE model and DYNK	Can build on derived investment and operation cost structure for PV systems
NetZero2040 (ACRP)	Decarbonisation options for Austria at an aggregate level	Linking the energy system model TIMES and the power market model MEDEA	Focuses on distributive impacts of the electricity transition and prosumerism on different household groups Provides macroeconomic effects
Integrate (ACRP)	Decarbonisation options for Austria at an aggregate level	Energy system model Euro-Calliope & macroeconomic model WEG-DYN	Refines distributive impacts of electricity transition and prosumerism on different household groups
Fair-Grid (OeNB)	Distributional impacts of grid expansion for different household types	Linking DYNK with an electricity market model	Information regarding prosumer perspective

Outlook to the Next Project Phase

https://futures-pv.wifo.ac.at/contact.htm

Thank you!

Project Team

WIFO

Julia Bock-Schappelwein, Claudia Kettner-Marx, Mark Sommer, Katharina Köberl-Schmid, Susanne Markytan

AIT

Gustav Resch, Carolin Monsberger

RWTH Aachen

Reinhard Madlener, Ayse Tugba Atasoy, Kagan Yüksel

This project is funded by the Klima- und Energiefonds and carried out within the Austrian Climate Research Program (ACRP)