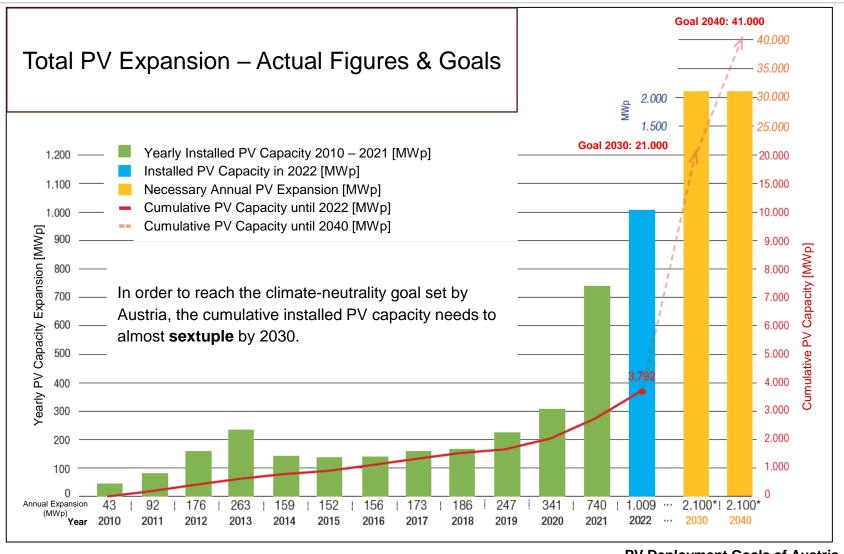


Forecasting the Diffusion of Residential Photovoltaic Systems in Austria: An Agent-Based Modeling Approach

Seif Marji, Kagan Yüksel, Reinhard Madlener


Agenda

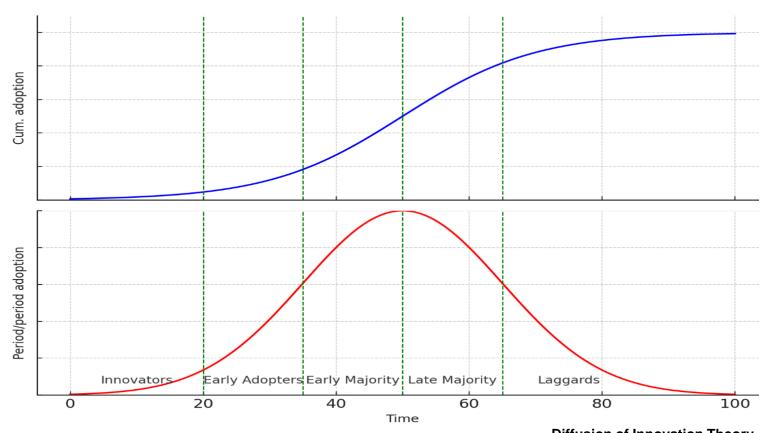
Introduction 2. Theoretical Background and Technical Specifications Methodology 3. Results and Scenario Analysis Conclusion and Outlook

Introduction

PV Deployment Goals of Austria

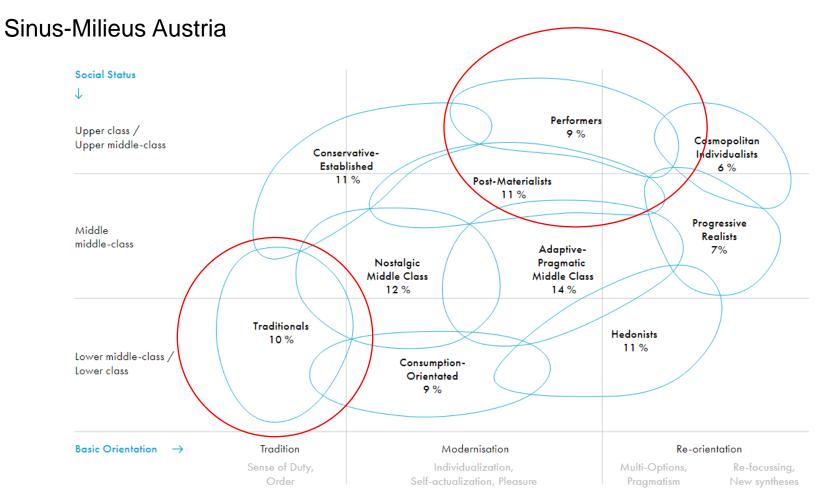
Source: PV Austria (2023); Statistik Austria (2022)

Agenda


Introduction Theoretical Background and Technical Specifications 2. Methodology 3. Results and Scenario Analysis 5. Conclusion and Outlook

Theoretical Background

Technological Diffusion & Agent-Based Modelling



Diffusion of Innovation Theory Source: Own Illustration based on Rogers (1962)

Theoretical Background

Sinus-Milieus of Austria

Source: Sinus-Milieus Austria (2022)

Theoretical Background

Solar Photovoltaics Policy in Austria – Summary of Recent Developments

Year	Feed-in-Tariff [€-cents/kWh]	Average Wholesale Electricity Selling Price [€-cents/kWh]	Capital Grants for PV systems [€/kWp]		Capital Grants for Batteries [€/kWh]
	5-10 kWp		< 5 kWp	5-10 kWp	
2008	39.99	7.28	2800	0	0
2009	39.98	4.72	2500	0	0
2010	38.00	4.66	1300	0	0
2011	38.00	5.66	1100	0	0
2012	27.60	4.87	800	0	0
2013	18.12	4.02	200	200	0
2014	12.50	3.53	200	200	0
2015	12.50	3.23	200	200	0
2016	8.24	2.70	275	375	0
2017	7.91	3.33	275	375	0
2018	7.91	4.45	250	250	500
2019	7.67	5.10	250	250	500
2020	7.67	3.99	250	250	200
2021	0.00	7.80	285	250	200
2022	0.00	33.43	285	285	200
2023	0.00	16.87	285	285	200

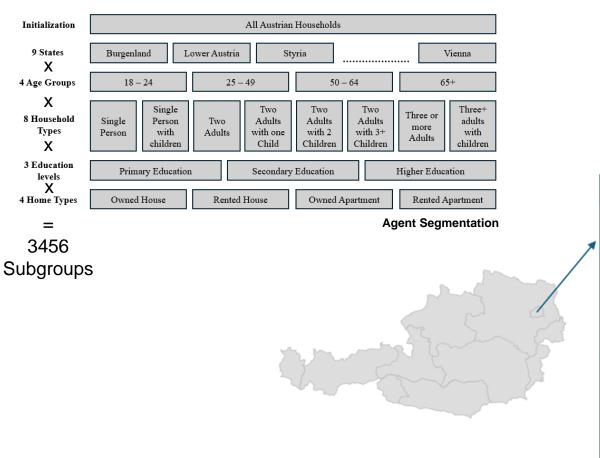
Sources: PV Austria (2024), IG Windkraft (2020), E-Control (2024), Klimafonds (2019)

Agenda

Introduction Theoretical Background and Technical Specifications 2. 3. Methodology 4. Results and Scenario Analysis 5. Conclusion and Future Outlook

Why agent-based model?

- Bayesian, regression or system dynamics model rely on the availability of vast datasets
- Autoregressive models and neural networks rely on the availability of long time series data with repeating patterns


Data scarcity

- Limited time-series data for training but extensive sources of other categorical data
- Detailed investigation of individual investment decisions utilizing multi-categorical data is necessary

Multi-Agent Segmentation

Example Agent

General Attributes:

- State: Vienna
- Age class: 25-49
- Household type: Two Adults
- Education level: Secondary Education
- Home type: Rented House
- Year: 2015

Individual Attributes:

- Sinus Milieu: Post Materialist
- Household Income: 31,000 €/a
- Electricity Consumption: 3500 kWh/a
- Electricity Production: 3000 kWh/a

Example Agent Attributes

Agent Adoption Decision

$$U_j = w_{econ}(sm_j) \cdot u_{econ}(j) + w_{com}(sm_j) \cdot u_{com}(j) + w_{inc}(sm_j) \cdot u_{inc}(j) + w_{env}(sm_j) \cdot u_{env}(j)$$

Where:

$$\sum_{k} w_k(sm_j) = 1 \text{ for } k \in K: \{econ, com, inc, env\} \quad and \quad w_k(sm_j), U_j \in [0,1]$$

Income Utility

Partial utility that depends on the Households Income

Influence Factors:

- State of living

 Education level
- Household type . Age class

Economic Utility

Partial utility depends on payback period of investment

Influence Factors:

- Produced amount . of electricity
- Consumption rate expenses of electricity Government
- Battery Adoption

Investment costs

- Yearly operational
- Subsidies

Agent

Decides to invest in the PV system

Influence Factors:

- Partial Utility
- Utility Weights

Partial Utility that depends on the number of links to other adopters.

Influence Factors:

- Agent's Sinus-Milieu
- · Number of adopters linked to Agent

Communication Utility

Environmental Utility

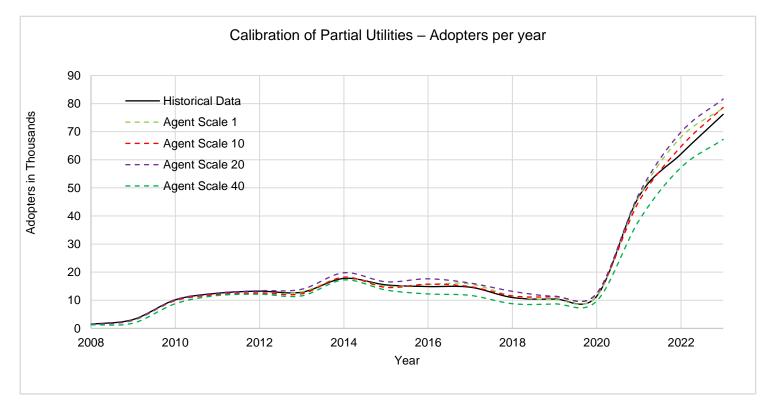
Partial Utility depends on the proportion of use of self produced electricity

Influence Factors:

- Electricity Consumption
- Home type

Partial Utilities and their Influence on Agents

Source: Own Illustration, inspired by Palmer et al. (2015)

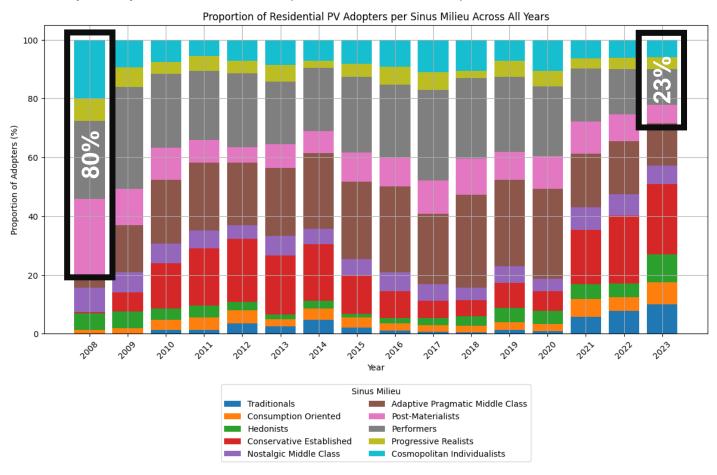


Model Calibration – Partial Utilities

Runtimes (RWTH High-Performance Computing)

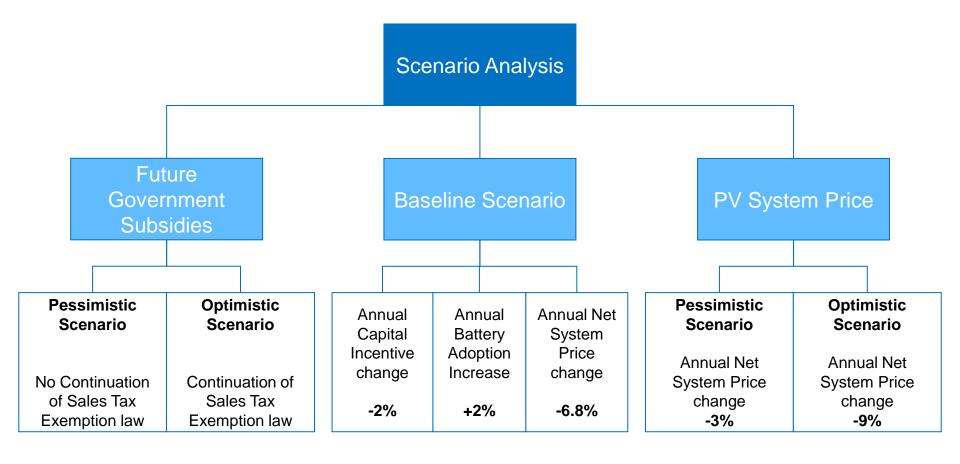
- 8 cores
- 256GB of RAM

- Full population: approx. 3 hours
- Scaled down by 40: 3 minutes
- Scaled down to 10: 12 minutes (optimal balance between computation time and accuracy)

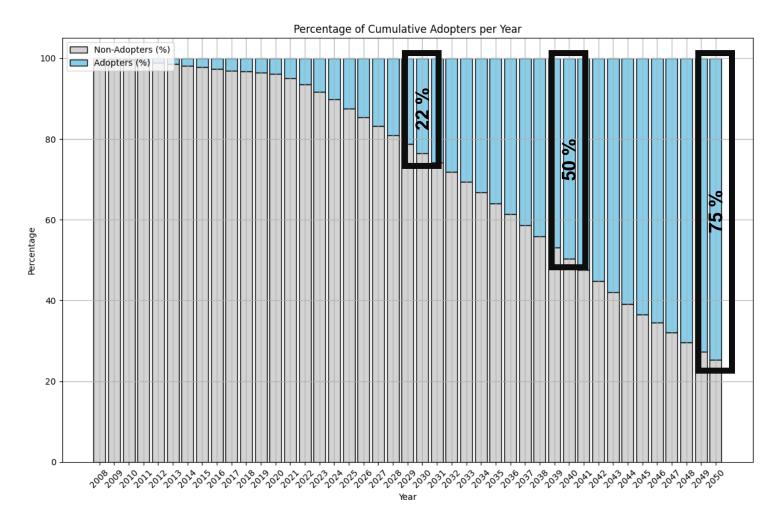

Agenda

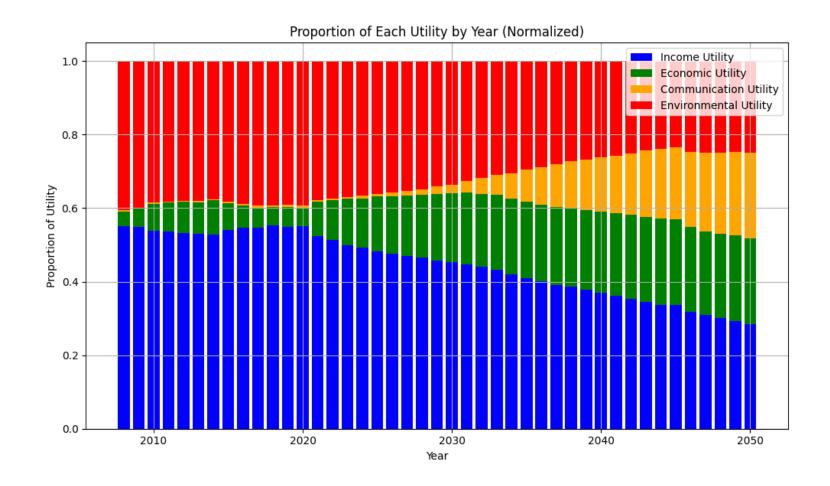
Introduction Theoretical Background and Technical Specifications 2. Methodology 3. Results and Scenario Analysis 5. Conclusion and Outlook

Proportion of Adopters per Sinus Milieu (Model Calibration)



Proportion of Residential PV Adopters per Sinus-Milieu

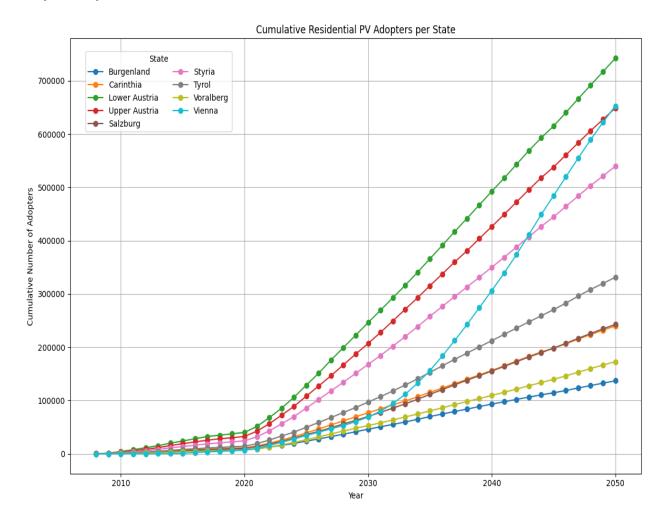

Forecasting Future Household PV Adoption – Scenario Analysis


Projected Future Adoption – Baseline Scenario

Influence of Partial Utility on Adoption Over Time – Baseline Scenario

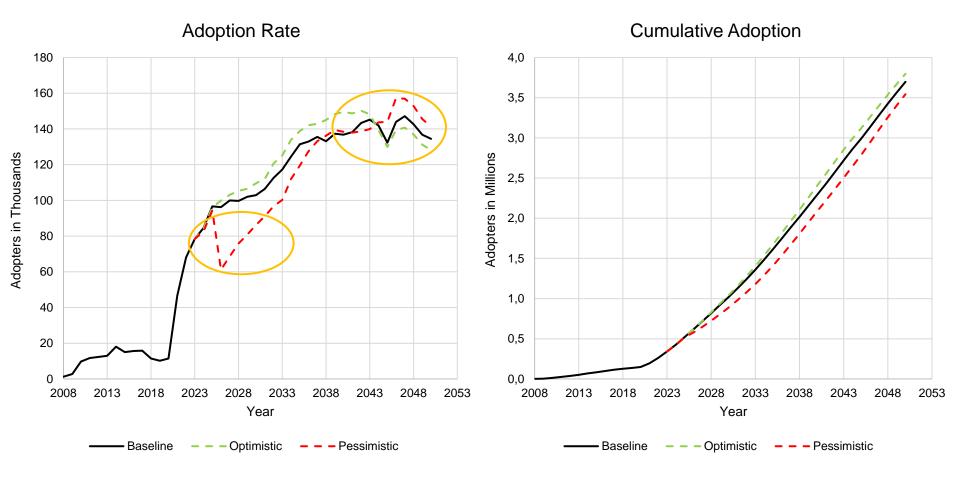
Results are cross-checked with surveys carried out by third parties as well as our own survey results

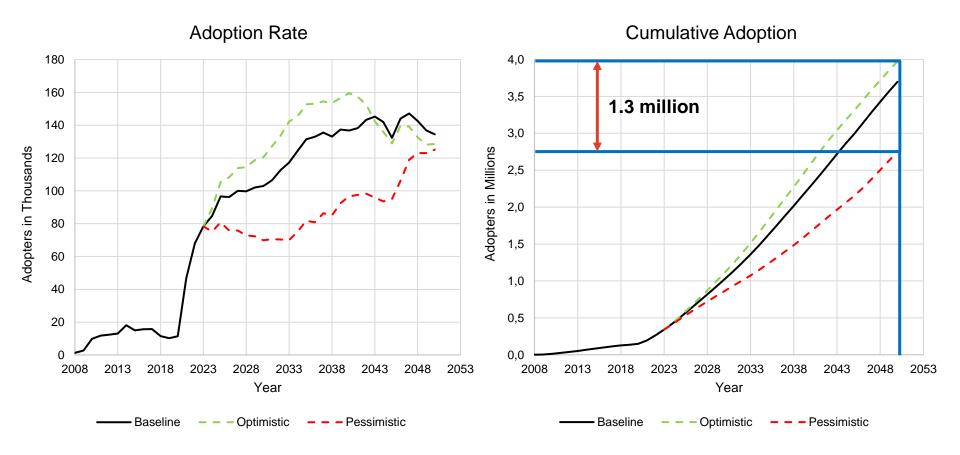
Deloitte.


Deloitte.



Cumulative Adoption per State – Baseline Scenario


Adoption per Home Type in Different Federal States – Baseline Scenario


Projected Future Adoption – PV Regulation Developments

Projected Future Adoption – PV System Price Scenarios

Agenda

Introduction Theoretical Background and Technical Specifications 2. Methodology 3. Results and Scenario Analysis Conclusion and Outlook

Conclusion and Outlook

- The model, expanding on Palmer et al. (2015), provides useful and a disaggregated investigation of PV adoption dynamics in Austria.
- Utilizing multi-categorical data enables better understanding of (state-level) market diffusion of residential PV systems in Austria.
- Sinus-Milieus are useful to reflect the socio-cultural dimensions of the Austrian population.
- House ownership loses ground as a primary factor for PV adoption. States with lower rates of homeownership are expected to catch up (e.g. Vienna).
- Changing the PV system price leads to market saturation faster than the offered subsidies.
- Incorporating state and district level policy heterogeneity into future models could enhance the predictive accuracy of the model (work in progress).

Work In Progress

■ "Zooming-In": State-Level Subsidy Investigation

State	Owned / Rented	Available Subsidy (< 5 kWp)	Available Subsidy (5 kWp ≤ x ≤ 10 kWp)	Combination with EAG?	Notes
Carinthia	Owned	€323 (per kWp)	€194 (per kWp)	YES	Maximum 50% of costs covered
Carinthia	Rented	€200 (per kWp)	€200 (per kWp)	YES	
Salzburg	Owned	0	€1,000 (per kWp) 40% of total PV system cost	YES	Systems under €500 are ignored
Styria	Owned	15% of total PV system cost	€300 (per kWp) 15% of total PV cost	YES	
Styria	Rented	15% of total PV system cost	€300 (per kWp) 15% of total PV system cost	YES	
Tyrol	Owned	0	€250 (per kWp)	YES	Minimum 7 kWp
Vienna	Owned	€250 (per kWp) 30% of total PV system cost	€250 (per kWp) 30% of total PV system cost	NO	Minimum 1 kWp

Work In Progress: Private E-Vehicle Charging Stations in Germany

■ "Plug-and-Play" Application for **Different Sustainable Residential Technologies**

Example Agent 1

General Attributes:

· Year: 2022

• State: North Rhine-Westphalia

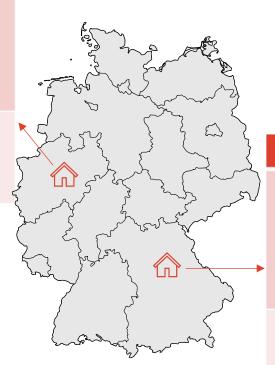
• Age Group: 25 to 49 years

Education Level: Tertiary Education

• Household Type: Two Adults

• Degree of Urbanization: Cities

· Parking Lot Type: Shared Garage


Individual Attributes:

• Household Income: 45,824 €/a

· Annual Driving Distance: 12,500 km/a

• Powertrain: Electric Motor

· Sinus Milieu: Performer Milieu

Example Agent 2

General Attributes:

• Year: 2022

State: Bavaria

• Age Group: 65+ years

• Education Level: Primary Education

· Household Type: Three Adults

Degree of Urbanization: Rural Areas

• Parking Lot Type: Lot on Private Ground

Individual Attributes:

Household Income: 20,712 €/a

• Annual Driving Distance: 18,500 km/a

• Powertrain: Combustion Engine

Sinus Milieu: Traditional Milieu

Contact:

Chair of Energy Economics and Management, Institute for Future Energy Consumer Needs and Behavior (FCN-ECO) E.ON Energy Research Center Mathieustrasse 10, 52074 Aachen, Germany

Kagan Yüksel, M.Sc.

T +49 241 80 49 831 kagan.yueksel@eonerc.rwth-aachen.de

http://www.fcn.eonerc.rwth-aachen.de

